
Course-ID: MA-INF 4306
Course: Lab Development and Application of Data Min-

ing and Learning Systems: Machine Learning
and Data Mining

Term: Summer 2021
Supervisor(s): Vanessa Toborek

How does training deep neural networks on a biased
dataset affect the loss landscape of the network?

Ali Mohammadi Amit Kumar Rana

September, 2021

Abstract

Many studies show a positive correlation between the generalization ability of a
deep neural network and the flatness of the minima in its loss landscape. Inspired
by this statement, many studies investigate the effect of using different training pa-
rameters and network architecture on the loss landscape of the neural network. This
study investigates the effect of training a deep neural network on a biased dataset on
its loss landscape by visualizing the loss landscape of the trained model. We found
that different types of biases in the training dataset can affect the geometry of the loss
landscape around the minima.

Contents

1 Introduction 3

2 Related Work 4

3 Methods and Materials 4
3.1 Network Architectures . 4

3.1.1 ResNet . 4
3.1.2 ShaResNet . 4

3.2 Dataset . 5
3.3 Biasness . 5

3.3.1 Mislabel Bias . 5
3.3.2 Size Bias (Skewness) . 5
3.3.3 Gaussian Noise . 6

3.4 Visualizing the Loss Landscape . 6
3.5 Implementation Details . 6

4 Results and Discussion 7

5 Conclusion and Further Remarks 10

Appendix A Visualizations of the loss landscape with Cross-entropy error loss 14

1

Appendix B 2D Contour Visualization of the loss landscape with Mean-squared
Error 16

Appendix C CIFAR10 Dataset 17

2

1 Introduction

Convolutional Neural Networks (CNNs), especially Deep Neural Networks, have made
significant progress in Machine Learning. They have become state-of-the-art methods in
many areas, such as computer vision tasks [KSH12]. Many neural networks are trained by
minimizing the loss function, such as cross-entropy loss or hinge loss, using some version
of SGD (Stochastic Gradient Descent) and a backpropagation algorithm to update model
weights in the direction of the gradients.

Compared to the traditional machine learning algorithms, deep networks have a sig-
nificantly large number of trainable parameters compared to training data points. Still,
they easily outperform these traditional algorithms by a considerable margin. The goal
is to train such networks with heavy overparameterization to generalize well on an un-
seen test dataset (beyond the training dataset). Training neural loss functions is NP-hard
in general as the goal is to minimize a high dimensional, highly non-convex loss func-
tion. Empirically, it has been observed that trainingmethods find global minimizers (zero
training error or significantly small training error) efficiently. It is not always the case that
one can find global minimizers. It has been observed that the type of neural network ar-
chitecture affects the ease of training. For example, adding skip connections makes the
training easier for even very deep networks [Li+18]. The model’s generalization ability
depends on training parameters such as optimizers, learning rate, batch normalization,
and dropout. These parameters affect the network in a certain way, but investigating the
effect of each parameter choice in the architecture is very hard. The reason is that a deep
neural network often has a considerably large number of parameters. It is a very high-
dimensional function, and the evaluation requires all the data points to pass through the
whole network. Given very high computation complexity, most of the work that has been
done is theoretical.

A lot of prior works have shown a positive correlation between generalization and flat-
ness around theminima [HS94; HS97; Cha+17; Kes+17; Nov+18; Wan+18]. Since a deep
neural network can be reparameterization-invariant, a flatness measure around minima
should also be reparameterization-invariant [Ran+19; Pet+19a]. For example, suppose
we have a neural network with RELU activation functions, and we scale the weights of
one layer by some value α and rescale the parameter of the next layer by 1/α. In that case,
the resulting network produces the same prediction for an arbitrary input. Therefore, the
network has the same ability of generalization with a different set of parameters.

Visualizing the loss landscape can provide insights into the loss curve and the training
method’s trajectory from initial weights to the convergence (globalminima) in the param-
eters space. We can also visualize the behavior of loss landscape nearmaxima to check for
the correlation between generalization and flatness around the minima. Visualizing the
loss landscape is often a challenging task, given the very high dimensionality of the loss
function. However, many studies try to provide methods for visualizing the loss land-
scape of a neural network. For example, Hao Li et al. [Li+18] suggest visualizing the loss
landscape using filter normalized random directions. It compares different architectures
and the training parameters by visualizing the loss landscape around the minima.

Only a few studies investigate the loss landscape of a neural network trained on a bi-
ased training dataset. The current study employs the method presented in [Li+18] to
visualize the loss landscape and see whether there is a correlation between the general-
ization of a network trained on a biased dataset and the flatness around the minima.

3

2 Related Work

Many studies hypothesis that flat minima correlates positively with better generaliza-
tion [HS94; HS97; Cha+17; Kes+17; Nov+18; Wan+18]. Sepp Hochreiter et al. [HS97]
define flat minima as a large area in network parameters space where the loss value of
a deep neural network remains low and relatively constant; the volume of such area
is used as their measure for flatness of loss minima. On the other hand, N. Keskar et
al. [Kes+17] use the maximum value of loss function around the minima to measure the
flatness. Many studies suggest using the Hessian matrix of the loss function to measure
the flatness [Kes+17; WZW17; Yao+18; Pet+19a; Ran+19].

Laurent Dinh et al. [Din+17] show that in some cases, arbitrarily sharper minima can
be found through reparameterizationwithout a loss in generalization ability and accuracy
of a neural network; thus, they prove that flatness of minima does not necessarily corre-
late with generalization. Many studies try to address this problem by providingmeasure-
ments for flatness invariant to such reparameterizations [Pet+19a; Ran+19]. Additionally,
other topological properties of loss minima have been studied. For example, Haowei He
et al. [HHY19] investigate asymmetric valleys in a loss landscape where the loss value
increases fast in a direction and relatively slow in the opposite direction. Furthermore,
many studies explore the loss landscape of neural networks concerning different network
architecture [Li+18], different training parameters [Zha+17; Kes+17; Li+18], and even
the training dataset [Chi+20].

3 Methods and Materials

3.1 Network Architectures

This study investigates the loss landscape of a neural network trained on a biased dataset.
For that, wedecided toResNet [He+16] and a less advancedversion of ShaResNet [Bou17]
to train and conduct the study. In the following two sections, we briefly explain each ar-
chitecture and our reasons for choosing them.

3.1.1 ResNet

We investigate the loss landscape of ResNet-20 architecture [He+16]. The reason for
choosing 20 layered ResNet is that the training time increases notably with larger net-
works. The training time is even more critical considering that we have to train the net-
work multiple times to investigate multiple biases in the training dataset with varying
bias parameters. With deeper networks, the number of parameters also increases by a
large margin. Since we have to visualize the loss landscape for each trained network (cor-
responding to different biases), it takes considerably high computational resources. On
the other hand, the network performance deteriorates significantly with fewer layers. The
parameter details are shown in Table 1.

3.1.2 ShaResNet

Even though ResNet-20 has relatively fewer parameters than the deeper networks, the
number of parameters is still huge when visualizing and analyzing the network’s loss
landscape. Therefore, we decided also to train ShaResNet-20 with significantly fewer pa-
rameters in case the number of parameters becomes problematic. Inspired from [Bou17],
we share the weight parameters between layers of a residual block if both layers operate

4

at the same spatial scale. As shown in [Bou17], without compromising much on the ac-
curacy, the number of trainable parameters reduced by around 30 percent compared to
the original ResNet-20 network. The details of the parameters of ShaResNet-20, as well as
sideways comparison with ResNet-20, are shown in Table 1.

Parameters details ResNet-20 ShaResNet-20

Total parameters 274,442 175,130
Trainable parameters 273,066 173,754
Non-trainable parameters 1,376 1,376

Table 1: Parameters details: The number of total parameters along with the number of
trainable and non-trainable parameters for ResNet-20 and ShaResNet-20.

3.2 Dataset

We use the CIFAR-10 dataset to conduct our experiments [Kri09]. The CIFAR-10 dataset
consists of 60000, 32x32 color images in 10 classes, with 6000 samples per class. There
are 50000 training images and 10000 test images. For visualisation purpose, 10 random
samples per class are shown in Appendix C, Fig. 7.

3.3 Biasness

The current study studies three different kinds of biases in the training dataset with vary-
ing degrees of biasness. We do not add any bias to the test dataset, which is used for
visualizing the loss landscape. The following three sections briefly explain each bias and
how to add it to an unbiased training dataset.

3.3.1 Mislabel Bias

The first bias we investigated is the mislabeling bias, where some of the samples in the
training dataset have an incorrect label. To obtain a training dataset withmislabeling bias,
first, we select a fixed percent (error percentage) of the dataset uniformly distributed over
all classes to mislabel. Next, we assign a new label chosen randomly (from a class other
than the correct class) to each sample. Finally, we verify that the number of samples per
class remains roughly the same, and therefore only the mislabeling bias is involved. We
study mislabeling bias with three different error percentages of 30, 60, and 80 percent.

3.3.2 Size Bias (Skewness)

In a size-biased dataset, data samples are distributed non-uniformly over different classes.
Therefore even though misinformation is not involved, the dataset becomes unbalanced
concerning the number of samples per class. This study investigates the case where one
particular class has significantly fewer samples than other classes. We add this bias by
first selecting one class of data and then removing a fixed percent (error percentage) of
its samples. We chose the ’Cat’ class and varied the percentage of removed samples from
30 to 90 with an increment of 30. We also experimented with the ’Ship’ class by removing
60 percent of its data points.

5

3.3.3 Gaussian Noise

Finally, we investigate the loss landscape of a neural network trained on a dataset consist-
ing of samples corrupted by Gaussian noise. To obtain such a training dataset, first, we
select a particular class to be corrupt. Next, we generate a Gaussian noise with the same
mean as themean of samples of the chosen class and a variance of 0.02. Finally, we add the
generated noise to a fixed percent (error percentage) of the samples belong to the chosen
class. We chose the ’Cat’ class and varied the percentage of removed samples from 30 to
90 with an increment of 30.

3.4 Visualizing the Loss Landscape

We use the method introduced by Hao Li et al. [Li+18] to visualize the loss landscape
of the trained models. This method plots the loss function along a random direction in
the parameters space. Formally, L(θ)L(θ)L(θ) can be defined as the loss value of a model with
parameters θθθ. The set of parameters θθθwith n parameters can be defined as a point in the n-
dimensional parameters space. To provide a 1-dimensional visualization of amodel’s loss
function along an n-dimensional direction vector δδδ, one can define a new function of form
f(α) = L(θ + αδ)f(α) = L(θ + αδ)f(α) = L(θ + αδ) and instead plot f(α)f(α)f(α) with L(θ)L(θ)L(θ) at the center (α = 0α = 0α = 0). One can easily
extend this approach for 2-dimensional visualization of the loss function by employing a
second direction vector and plot f(α, β) = L(θ + αδ + βη)f(α, β) = L(θ + αδ + βη)f(α, β) = L(θ + αδ + βη).

Despite the simplicity of using themethod of the randomdirection to visualize the loss
landscape of a network, as shown by Hao Li et al. [Li+18], this approach is not invariant
to the scale of parameters. It, therefore, is not suitable for the comparison of different
networks. To address this problem, Hao Li et al. [Li+18] suggest using filter-wise nor-
malized directions. To generate filter-wise normalized direction, initially, a direction ddd is
used. Next, for each filter f with parameters θfθfθf , the corresponding parameters dfdfdf are re-
scaled to have the same norm. In other words, each parameter in dfdfdf is scaled by a scaling
factor of ‖θf‖‖df‖

‖θf‖
‖df‖
‖θf‖
‖df‖ where ‖ · ‖‖ · ‖‖ · ‖ denotes the Frobenius norm. This normalization is also applied

to the fully connected layers treating them as convolutional layers with a 1x1 output fea-
ture map. Note that Hao Li et al. [Li+18] does not apply the random directions to the
batch normalization parameters.

In the current study, we generate 20 randomly initialized direction vectors and per-
form filter-wise normalization on them. Next, we use "Mean Squared Error" and "Cate-
gorical Cross-Entropy" as loss function (L(θ)L(θ)L(θ)) and calculate f(α)f(α)f(α) as defined above with
α ∈ [−1, 1]α ∈ [−1, 1]α ∈ [−1, 1]. Additionally, for each point, we calculate the accuracy as well. Finally, we
calculate the average of 20 values on each point to produce a single trajectory. For 2-
dimensional visualizations, we use a similar approach. However, instead of using the
average of multiple trials, we first produce 50 filter-wise normalized random directions
and find 2 with the minimum dot product to assure maximum orthogonality between
directions.

3.5 Implementation Details

We implement the neural networks and the trainingprocedure in PythonusingKeras [Cho+15]
and TensorFlow [Mar+15] libraries. The networks are trained in the "google colab" with
the free GPUs available. We normalize the CIFAR-10 dataset by scaling pixel values from
[0,255] to [0,1], then we demean the dataset by subtracting the mean of each sample from
the sample. We train the network on 200 epochs over the whole training dataset, with a
batch size of 128. We use Adam [KB15] optimizer with cross-entropy loss. Time taken

6

per epoch for training is around 34 seconds for ResNet-20 and 22 seconds for ShaResNet
on average. To stabilize the training, we use a learning rate decay. The learning rate is
scheduled to be reduced after 80, 120, 160, 180 epochs.1.

4 Results and Discussion

We first trained ResNet-20 on the CIFAR-10 training dataset without any bias. The classi-
fication report on validation data, is shown in Table 2. The classification report shows that
class label 3 (Cat class) has the lowest precision, class label 8 (Ship class) has relatively
high precision. Therefore as discussed in Sec. 3.3.2 and Sec. 3.3.1 we chose ’Cat’ and ’Ship’
classes to add size-biased and mislabeling bias.

Classfication Report, ResNet-20, unbiased

Class label precision recall f1-score
0 0.80 0.82 0.81
1 0.90 0.92 0.91
2 0.72 0.69 0.70
3 0.64 0.64 0.64
4 0.77 0.78 0.77
5 0.71 0.70 0.71
6 0.82 0.85 0.83
7 0.83 0.82 0.83
8 0.89 0.89 0.89
9 0.86 0.88 0.87

Table 2: Classfication Report, ResNet-20, unbiased: The classification report on valida-
tion data for the ResNet-20 architecture trained on the unbiased training dataset.

Deep neural networks can generalize so well even with notably more parameters than
the training samples. To see this numerically, we use the equation and formulation for
generalization error, also used in [Pet+19b]. The generalization error is given by the dif-
ference between the test error and training error (empirical error), given by

εgen = E(x,y)∼D[l((f(x), y)]−
∑

(x,y)∈S l((f(x), y)

|S|
(1)

which is the difference between the expected error on the target distribution D and the
empirical(training) error on finite dataset S sampled from D. Here, f is the function de-
noted (learned) by the deep neural network.

Using the equation 1, we calculate the generalization error for bothResNet and ShaRes-
Net trainedwith different biases. The result is shown in Table 3 and Table 4, for ResNet-20
and ShaResNet-20 respectively. We got theworst generalization for themislabelled biases.
The generalization declined with the increment in the mislabelled samples per class. The
generalization errors are similar for both ResNet-20 and ShaResNet-20. However, as ex-
pected, the generalization error for the ShaResNet-20 is slightly higher than ResNet-20.

The generalization error for unbiased, gaussian-noise-bias-cat-60, size-bias-cat-30, size-
bias-cat-60, and size-bias-ship-60 are comparable. It’s evident from Table. 3, that the gen-
eralization error for size-bias-cat-30 and gaussian-noise-bias-cat-60 are slightly lower than

1Gihub repository: https://github.com/ali-mohammadi-scrc/ML_Lab

7

https://github.com/ali-mohammadi-scrc/ML_Lab

ResNet-20 after 200 epochs

Bias Type Train accuracy Val. accuracy Gen. error
unbiased 1.0 0.7968 0.2032
gaussian-noise-bias-cat-60 1.0 0.8111 0.1889
mislabeling-bias-30 0.9999 0.5081 0.4919
mislabeling-bias-60 1.0 0.2655 0.7345
mislabeling-bias-80 0.9978 0.1369 0.8609
size-bias-cat-30 1.0 0.8085 0.1915
size-bias-cat-60 1.0 0.7983 0.2017
size-bias-cat-90 1.0 0.7641 0.2359
size-bias-ship-60 1.0 0.7979 0.2021

Table 3: Performance of ResNet-20: Training accuracy, validation accuracy, and general-
ization error for the ResNet-20 architecture for different biases. The generalization error
is calculated using the eq. 1.

the unbiased network. We observed in these cases, the accuracy for the corrupted class is
declined while improving the accuracy of some of the other classes, balancing the overall
accuracy. For example, when ’Cat’ class samples were removed, the validation accuracy
for the ’Cat’ class went down, but at the same time, accuracy for the ’Dog’ class increased.
The mislabelling biases have the worst generalization. The reason is that a fixed percent-
age of the data from each class ismislabelled, meaning thatwe are feedingmisinformation
to the network, hence making the network unstable. This behavior gets even worse when
we increase the samples of mislabelled samples in the training data. As seen in Table 3
and Table 4, When mislabelling is done to 80 percentage of the training dataset, the val-
idation accuracy is around 13 percentage which is just slightly better than guessing the
class labels by chance.

ShaResNet-20 after 200 epochs

Bias Type Train accuracy Val. accuracy Gen. error
unbiased 1.0 0.7846 0.2154
gaussian-noise-bias-cat-60 1.0 0.7774 0.2225
mislabeling-bias-30 0.9999 0.4801 0.5199
mislabeling-bias-60 0.9999 0.2551 0.7448
mislabeling-bias-80 0.9993 0.1334 0.8658
size-bias-cat-30 1.0 0.7795 0.2205
size-bias-cat-60 1.0 0.7753 0.2247
size-bias-cat-90 1.0 0.7549 0.2451
size-bias-ship-60 1.0 0.7721 0.2279

Table 4: Performance of ShaResNet-20: Training accuracy, validation accuracy, and gen-
eralization error for the ShaResNet-20 architecture for different biases. The generalization
error is calculated using the equation [1].

To visualize the loss landscape of the trained networks, we follow the methodology
from Sec. 3.4. 1-dimensional visualization of the loss landscape on the validation data for
both ResNet and ShaResNet is shown in Fig. 1. It can be observed that the plots for misla-
belling biases are significantly higher compared to other biases at the center location; this

8

Figure 1: 1D visualization of the loss landscape of ResNet-20 and ShaResNet-20 with
Mean-squared error loss

implies that they have high validation loss around the minima. The plots for the rest of
the biases are relatively similar, which also goes with the fact that the generalization be-
havior of the networks for these biases is almost similar, as shown in Table 3 and Table 4.
Following our discussion in Sec. 1 and Sec. 2, a lot of previous studies show the correlation
between generalization and flat minima. Nevertheless, most of those studies compare dif-
ferent architectures and network parameters. Here, we study the effect of using a biased
training dataset, and 1-dimensional visualization is not strong or clear enough to give any
correlation between flatter minima of loss landscape and better generalization.

To provide more insights into the loss landscape of the networks, we also generate the
2-dimensional visualization of the loss landscape, as described in Sec. 3.4. The resulting
2-dimensional visualizations for ResNet are shown in Fig. 2. It is evident from Fig. 2 that
the shape of the loss landscape is pretty much similar for all the biases except for the mis-
labelling biases because all have similar generalizations. We can see that for mislabeling,
especially for 60 and 80 percentage, we have a bit of sharpness around the minima com-
pared to the unbiased network. We interpret this as a positive correlation between the
generalization and flatness around minima. We also plotted the 2-dimensional contours
for loss landscape around minima shown in Fig. 6. The visualizations with cross-entropy
error loss are present in Appendix A.

We also observe that the fluctuations around the minima increase with the increase in
biasness, adding chaotic behavior to the loss landscape around theminima. It is still tough
to find any direct correlation from these geometric observations around minima and the
networks’ generalization. We also observe from Table. 3 that the networks’ generalization
when 30 and 60 percent of samples from the ’Cat’ class are removed is better than the
unbiased network. This behavior might be due to a correlation between the ’Cat’ class
and some other classes (mainly the ’Dog’ class) because, with a slight decrease in the
validation accuracy of the ’Cat’ class, the validation accuracy for the ’Dog’ class increases
significantly.

9

Figure 2: 2D Loss Landscape Visualization for ResNet-20 withMean-squared error loss

5 Conclusion and Further Remarks

Inspecting the loss landscape around the minima for neural networks can give us insights
into the network’s generalization ability. Many studies visualize the loss landscape for dif-
ferent network architectures and different training parameters. In this work, we inspect
the loss landscape for networks trained on a biased training dataset. Following the discus-
sion in Sec. 4, we experimentedwithmultiple biases and found that whenmisinformation
(mislabelled training dataset) is involved in the training dataset, the generalization ability
of the network significantly drops. The increment in misinformation also leads to incre-
ment the generalization error. We found some implicit correlation between some of the
classes in the training datasetwhenweused size bias(skewness). However, we are unsure
whether it is generalizable to other datasets or specific to the CIFAR10 dataset.

1-dimensional visualization of the loss landscape does not provide much information
about the network. 2-dimensional visualizations give us better insights into the geom-
etry of the loss landscape around the minima. For the mislabeled biases, the minimas
are sharper compared to the unbiased network. Expectedly their generalization error is
relatively high. Since we use 2-dimensional vectors to visualize a high-dimensional loss
landscape, it is hard to get the exact loss surface. Our work can be further extended using
quantitative measures of flatness around the minima as an indicator of the generalization
ability. Most of the methods [Pet+19b; Ran+19] are Hessian-based, which requires high

10

computational resources, and therefore impossible to compute in this study.

11

References

[HS94] S. Hochreiter and J. Schmidhuber. “Simplifying Neural Nets by Discovering
Flat Minima”. In: NIPS. 1994.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Flat Minima”. In:Neural Compu-
tation 9.1 (1997), pp. 1–42.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep.
2009.

[KSH12] A. Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classifi-
cation with deep convolutional neural networks”. In: Communications of the
ACM 60 (2012), pp. 84–90.

[Cho+15] Francois Chollet et al. Keras. 2015. url: https://github.com/fchollet/
keras.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. In: CoRR abs/1412.6980 (2015).

[Mar+15] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. url: https://www.
tensorflow.org/.

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

[Bou17] Alexandre Boulch. “ShaResNet: reducing residual network parameter num-
ber by sharing weights”. In: ArXiv abs/1702.08782 (2017).

[Cha+17] P. Chaudhari et al. “Entropy-SGD: Biasing Gradient Descent Into Wide Val-
leys”. In: ArXiv abs/1611.01838 (2017).

[Din+17] LaurentDinh et al. “SharpMinimaCanGeneralize ForDeepNets”. In: ICML.
2017.

[Kes+17] N. Keskar et al. “On Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima”. In: ArXiv abs/1609.04836 (2017).

[WZW17] LeiWu, Zhanxing Zhu, and E.Weinan. “TowardsUnderstandingGeneraliza-
tion ofDeepLearning: Perspective of Loss Landscapes”. In:ArXiv abs/1706.10239
(2017).

[Zha+17] ChiyuanZhang et al. “Understanding deep learning requires rethinking gen-
eralization”. In: ArXiv abs/1611.03530 (2017).

[Li+18] Hao Li et al. “Visualizing the Loss Landscape of Neural Nets”. In: NeurIPS.
2018.

[Nov+18] Roman Novak et al. “Sensitivity and Generalization in Neural Networks: an
Empirical Study”. In: ArXiv abs/1802.08760 (2018).

[Wan+18] HuanWang et al. “IdentifyingGeneralizationProperties inNeuralNetworks”.
In: ArXiv abs/1809.07402 (2018).

[Yao+18] Z. Yao et al. “Hessian-basedAnalysis of Large Batch Training andRobustness
to Adversaries”. In: ArXiv abs/1802.08241 (2018).

[HHY19] HaoweiHe,GaoHuang, andYangYuan. “AsymmetricValleys: Beyond Sharp
and Flat Local Minima”. In: NeurIPS. 2019.

12

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://www.tensorflow.org/

[Pet+19a] Henning Petzka et al. “A Reparameterization-Invariant Flatness Measure for
Deep Neural Networks”. In: ArXiv abs/1912.00058 (2019).

[Pet+19b] Henning Petzka et al. “A Reparameterization-Invariant Flatness Measure for
Deep Neural Networks”. In: ArXiv (2019).

[Ran+19] Akshay Rangamani et al. “A Scale Invariant Flatness Measure for Deep Net-
work Minima”. In: ArXiv abs/1902.02434 (2019).

[Chi+20] Sathya R Chitturi et al. “Perspective: new insights from loss function land-
scapes of neural networks”. In: Machine Learning: Science and Technology 1.2
(2020), p. 023002.

13

Appendix A Visualizations of the loss landscapewithCross-entropy
error loss

Figure 3: 1D visualization of the loss landscape for ResNet-20 and ShaResNet-20 with
Cross-entropy error loss

Figure 4: 2D Loss contour visualization for ResNet-20 withr Cross-entropy error loss

14

Figure 5: 2D loss landscape visualization for ResNet-20 with Cross-entropy error loss

15

Appendix B 2DContourVisualization of the loss landscapewith
Mean-squared Error

Figure 6: 2D Loss contour visualization for ResNet-20 with Mean-squared error loss

16

Appendix C CIFAR10 Dataset

Figure 7: CIFAR-10 dataset: This image shows 10 random examples per class from CI-
FAR10 datset. Image from CIFAR10.

17

https://www.cs.toronto.edu/~kriz/cifar.html

	1 Introduction
	2 Related Work
	3 Methods and Materials
	3.1 Network Architectures
	3.1.1 ResNet
	3.1.2 ShaResNet

	3.2 Dataset
	3.3 Biasness
	3.3.1 Mislabel Bias
	3.3.2 Size Bias (Skewness)
	3.3.3 Gaussian Noise

	3.4 Visualizing the Loss Landscape
	3.5 Implementation Details

	4 Results and Discussion
	5 Conclusion and Further Remarks
	Appendix A Visualizations of the loss landscape with Cross-entropy error loss
	Appendix B 2D Contour Visualization of the loss landscape with Mean-squared Error
	Appendix C CIFAR10 Dataset

